Practice with Professional-Data-Engineer Dumps for Google Cloud Certified Certified Exam Questions & Answer [Q41-Q64]


Rate this post

Practice with Professional-Data-Engineer Dumps for Google Cloud Certified Certified Exam Questions & Answer

REAL Professional-Data-Engineer Exam Questions With 100% Refund Guarantee

Google Professional-Data-Engineer exam is a certification offered by Google to professionals who specialize in data engineering. Professional-Data-Engineer exam is designed to test the candidate’s understanding of data processing systems, data modeling, data governance, and data transformation. Google Certified Professional Data Engineer Exam certification aims to validate the candidate’s expertise in Google Cloud Platform’s data engineering technologies and their ability to design and develop effective data solutions.

 

Q41. You have a query that filters a BigQuery table using a WHERE clause on timestamp and ID columns. By using bq query – -dry_run you learn that the query triggers a full scan of the table, even though the filter on timestamp and ID select a tiny fraction of the overall data. You want to reduce the amount of data scanned by BigQuery with minimal changes to existing SQL queries. What should you do?

 
 
 
 

Q42. The marketing team at your organization provides regular updates of a segment of your customer dataset.
The marketing team has given you a CSV with 1 million records that must be updated in BigQuery. When you use the UPDATE statement in BigQuery, you receive a quotaExceeded error. What should you do?

 
 
 
 

Q43. Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

 
 
 
 

Q44. After migrating ETL jobs to run on BigQuery, you need to verify that the output of the migrated jobs is the same as the output of the original. You’ve loaded a table containing the output of the original job and want to compare the contents with output from the migrated job to show that they are identical. The tables do not contain a primary key column that would enable you to join them together for comparison.
What should you do?

 
 
 
 

Q45. Which is not a valid reason for poor Cloud Bigtable performance?

 
 
 
 

Q46. You want to archive data in Cloud Storage. Because some data is very sensitive, you want to use the “Trust No One” (TNO) approach to encrypt your data to prevent the cloud provider staff from decrypting your data. What should you do?

 
 
 
 

Q47. You work for a shipping company that uses handheld scanners to read shipping labels. Your company has strict data privacy standards that require scanners to only transmit recipients’ personally identifiable information (PII) to analytics systems, which violates user privacy rules. You want to quickly build a scalable solution using cloud-native managed services to prevent exposure of PII to the analytics systems.
What should you do?

 
 
 
 

Q48. Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

 
 
 
 

Q49. Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations.
What should you do?

 
 
 
 

Q50. You store historic data in Cloud Storage. You need to perform analytics on the historic data. You want to use a solution to detect invalid data entries and perform data transformations that will not require programming or knowledge of SQL.
What should you do?

 
 
 
 

Q51. Which of the following is not true about Dataflow pipelines?

 
 
 
 

Q52. You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:
The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

 
 
 
 

Q53. Cloud Bigtable is a recommended option for storing very large amounts of
____________________________?

 
 
 
 

Q54. Which of the following statements about Legacy SQL and Standard SQL is not true?

 
 
 
 

Q55. You are selecting services to write and transform JSON messages from Cloud Pub/Sub to BigQuery for a data pipeline on Google Cloud. You want to minimize service costs. You also want to monitor and accommodate input data volume that will vary in size with minimal manual intervention. What should you do?

 
 
 
 

Q56. You are building a model to make clothing recommendations. You know a user’s fashion pis likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

 
 
 
 

Q57. Case Study 1 – Flowlogistic
Company Overview
Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.
Company Background
The company started as a regional trucking company, and then expanded into other logistics market.
Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.
Solution Concept
Flowlogistic wants to implement two concepts using the cloud:
* Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads
* Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They also want to use predictive analytics to learn earlier when a shipment will be delayed.
Existing Technical Environment
Flowlogistic architecture resides in a single data center:
* Databases
8 physical servers in 2 clusters
– SQL Server – user data, inventory, static data
3 physical servers
– Cassandra – metadata, tracking messages
10 Kafka servers – tracking message aggregation and batch insert
* Application servers – customer front end, middleware for order/customs
60 virtual machines across 20 physical servers
– Tomcat – Java services
– Nginx – static content
– Batch servers
* Storage appliances
– iSCSI for virtual machine (VM) hosts
– Fibre Channel storage area network (FC SAN) – SQL server storage
– Network-attached storage (NAS) image storage, logs, backups
* 10 Apache Hadoop /Spark servers
– Core Data Lake
– Data analysis workloads
* 20 miscellaneous servers
– Jenkins, monitoring, bastion hosts,
Business Requirements
* Build a reliable and reproducible environment with scaled panty of production.
* Aggregate data in a centralized Data Lake for analysis
* Use historical data to perform predictive analytics on future shipments
* Accurately track every shipment worldwide using proprietary technology
* Improve business agility and speed of innovation through rapid provisioning of new resources
* Analyze and optimize architecture for performance in the cloud
* Migrate fully to the cloud if all other requirements are met
Technical Requirements
* Handle both streaming and batch data
* Migrate existing Hadoop workloads
* Ensure architecture is scalable and elastic to meet the changing demands of the company.
* Use managed services whenever possible
* Encrypt data flight and at rest
* Connect a VPN between the production data center and cloud environment SEO Statement We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.
We need to organize our information so we can more easily understand where our customers are and what they are shipping.
CTO Statement
IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO’ s tracking technology.
CFO Statement
Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don’t want to commit capital to building out a server environment.
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?

 
 
 
 

Q58. MJTelco Case Study
Company Overview
MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world.
The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.
Company Background
Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.
Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.
Solution Concept
MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:
* Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
* Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.
MJTelco will also use three separate operating environments – development/test, staging, and production – to meet the needs of running experiments, deploying new features, and serving production customers.
Business Requirements
* Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
* Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
* Provide reliable and timely access to data for analysis from distributed research workers
* Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.
Technical Requirements
* Ensure secure and efficient transport and storage of telemetry data
* Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
* Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately
100m records/day
* Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.
CEO Statement
Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.
CTO Statement
Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.
CFO Statement
The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud’s machine learning will allow our quantitative researchers to work on our high- value problems instead of problems with our data pipelines.
You need to compose visualizations for operations teams with the following requirements:
* The report must include telemetry data from all 50,000 installations for the most resent 6 weeks (sampling once every minute).
* The report must not be more than 3 hours delayed from live data.
* The actionable report should only show suboptimal links.
* Most suboptimal links should be sorted to the top.
* Suboptimal links can be grouped and filtered by regional geography.
* User response time to load the report must be <5 seconds.
Which approach meets the requirements?

 
 
 
 

Q59. A TensorFlow machine learning model on Compute Engine virtual machines (n2-standard -32) takes two days to complete framing. The model has custom TensorFlow operations that must run partially on a CPU You want to reduce the training time in a cost-effective manner. What should you do?

 
 
 
 

Q60. You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

 
 
 
 

Q61. Which Google Cloud Platform service is an alternative to Hadoop with Hive?

 
 
 
 

Q62. You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to query all of the tables for the past 30 days in legacy SQL. What should you do?

 
 
 
 

Q63. Which of the following statements about the Wide & Deep Learning model are true? (Select 2 answers.)

 
 
 
 

Q64. The _________ for Cloud Bigtable makes it possible to use Cloud Bigtable in a Cloud Dataflow pipeline.

 
 
 
 

PDF Download Google Test To Gain Brilliante Result!: https://www.dumpsmaterials.com/Professional-Data-Engineer-real-torrent.html

         

Leave a Reply

Your email address will not be published. Required fields are marked *

Enter the text from the image below